TD 17. Matrices, déterminants.

Exercice 1. Déterminer la matrice dans la/les bases canoniques de :

a)
$$f:(x,y,z)\mapsto (3x+4y-4z,-2x-y+2z,-2x+z)$$

b)
$$f: \mathbb{R}_n[X] \to \mathbb{R}_{n-1}[X]$$

 $P \mapsto P'$

Exercice 2. Soit f l'application linéaire canoniquement associé à $A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & 4 & 1 & 3 \end{pmatrix}$.

Déterminer Ker(f) et Im(f).

Exercice 3. 1°) Soit $A = \begin{pmatrix} 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ et f l'endomorphisme de \mathbb{R}^4 canoniquement associé.

Sans calculs, déterminer Ker f et Im f. Déterminer également f^2 .

2°) Soit $B=\begin{pmatrix}1&4&1\\2&5&1\\3&6&1\end{pmatrix}$ et g l'endomorphisme de \mathbb{R}^3 canoniquement associé à B.

Presque sans calculs, déterminer $\operatorname{Ker} g$ et $\operatorname{Im} g$.

Exercice 4. Soit E l'espace des fonctions de \mathbb{R} dans \mathbb{R} et $F = \text{Vect}(\cos, \sin)$.

- a) Montrer que $B = (\cos, \sin)$ est une base de F.
- b) Montrer que $u: f \mapsto f'$ est un endomorphisme de F.
- c) Déterminer la matrice A de u dans la base B. Calculer A^2 . Qu'en déduire?

Exercice 5. Soit u l'endomorphisme de $\mathbb{R}_n[X]$ défini par : u(P) = P(X+1).

- a) Déterminer la matrice A de u dans la base canonique.
- b) Calculer A^k pour tout $k \in \mathbb{N}$.
- c) Montrer que A est inversible et donner A^{-1} .

Exercice 6. Soit $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \in E = \mathcal{M}_2(\mathbb{R})$, et ϕ définie sur E par : $\phi(M) = AM - MA$.

Montrer que ϕ est un endomorphisme de E. Écrire sa matrice dans la base canonique de E. Déterminer son noyau, son image.

Exercice 7. Soit $A = \frac{-1}{3} \begin{pmatrix} -2 & -1 & 2 & 0 \\ 0 & -3 & 0 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, et f l'endomorphisme de \mathbb{R}^4 canoniquement associé.

Montrer que f est un projecteur de \mathbb{R}^4 . Montrer l'existence d'une base dans laquelle la matrice de f est diagonale, déterminer une telle base et la matrice dans cette base.

Exercice 8. Soit f l'endomorphisme de \mathbb{R}^3 défini par : f(x,y,z) = (3x+4y-4z, -2x-y+2z, -2x+z).

- 1°) Donner la matrice A de f dans la base canonique \mathcal{B} de \mathbb{R}^3 .
- **2°)** Déterminer une base \mathcal{B}' de \mathbb{R}^3 telle que mat $f = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.
- 3°) Comment en déduire A^n pour tout $n \in \mathbb{N}$?

Exercice 9. Montrer que les matrices suivantes sont semblables :

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad ; \quad A' = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Exercice 10. On pose : $\forall P \in \mathbb{R}_2[X], \varphi(P) = (X^2 + 2)P'' + (X + 1)P' + P$.

- $\mathbf{1}^{\circ}$) Montrer que φ est un endomorphisme de $\mathbb{R}_2[X]$.
- 2°) Déterminer la matrice A de φ dans la base canonique de $\mathbb{R}_2[X]$.
- 3°) φ est-elle bijective?
- **4°)** Déterminer $\operatorname{Ker}(\varphi 5\operatorname{id})$ où id désigne l'identité de $\mathbb{R}_2[X]$. Calculer $\varphi(1), \varphi(X+1)$.
- 5°) En déduire une base de $\mathbb{R}_2[X]$ dans laquelle la matrice de φ est diagonale.

Exercice 11. Dans \mathbb{R}^3 , on considère la droite D = Vect((1,2,1)) et le plan $\Pi = \{(x,y,z) \in \mathbb{R}^3 \ / \ x - 2y + 5z = 0\}$.

- a) Montrer que $D \oplus \Pi = \mathbb{R}^3$.
- b) Déterminer la matrice de la projection p sur Π parallèlement à D, dans la base canonique (plusieurs méthodes possibles, dont le changement de base).
- c) Déterminer les matrices dans la base canonique de la symétrie s par rapport à Π parallèlement à D et de la projection q sur D parallèlement à Π .

Exercice 12. (Une autre méthode pour les suites récurrentes linéaires)

Soit (u_n) une suite réelle vérifiant : $\forall n \in \mathbb{N}, u_{n+2} = 4u_{n+1} - 3u_n$.

On pose, pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$.

- a) Déterminer une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$. Déterminer alors X_n en fonction de A^n et X_0 .
- b) On pose v = (1, 1) et w = (1, 3). Justifier que B' = (v, w) est une base de \mathbb{R}^2 . Soit f l'endomorphisme canoniquement associé à A. Déterminer la matrice D de f dans la base B'.
- c) En déduire A^n pour tout $n \in \mathbb{N}$, puis u_n en fonction de n, u_0 et u_1 .

Exercice 13. Soit $B = (X^n, X^{n-1}(X+1), X^{n-2}(X+1)^2, \dots, X(X+1)^{n-1}, (X+1)^n)$. Écrire la matrice de B dans la base canonique de $\mathbb{R}_n[X]$, en déduire que B est une base de $\mathbb{R}_n[X]$ (question bonus : sauriez-vous le montrer sans matrice?).

Exercice 14. a) Calculer le rang des matrices suivantes : $A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$; $B = \begin{pmatrix} 2 & -3 & -4 \\ 3 & 1 & 5 \\ -1 & 0 & 1 \\ 0 & 2 & 4 \end{pmatrix}$

b) Déterminer le rang de la famille (v_1, v_2, v_3, v_4) où $v_1 = (1, 0, 3), v_2 = (3, 1, 0), v_3 = (4, -1, 2), v_4 = (5, 1, 1).$

Exercice 15. Soit
$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & a_1 \\ 1 & \ddots & & \vdots & a_2 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 0 & a_{n-1} \\ 0 & \cdots & 0 & 1 & a_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- 1) Déterminer le rang de A en fonction des données.
- 2) Dans le cas où le rang vaut n-1, déterminer une base de $\operatorname{Im} f$ et de $\operatorname{Ker} f$, où f est l'endomorphisme canoniquement associée à A. À quelle condition a-t-on $\mathbb{R}^n = \operatorname{Ker} f \oplus \operatorname{Im} f$?

Exercice 16. Soient $v_1 = (-x, 1, 1)$, $v_2 = (1, -x, 1)$, $v_3 = (1, 1, -x)$, où $x \in \mathbb{R}$. La famille (v_1, v_2, v_3) est-elle une base de \mathbb{R}^3 ?

Exercice 17. Calculer les déterminants suivants directement sous forme factorisée :

$$\begin{vmatrix} a & b & c \\ b & b & c \\ c & c & c \end{vmatrix} ; \begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}$$

Exercice 18. Calculer $\begin{vmatrix} 1 & 1 & 1 \\ \sin a & \sin b & \sin c \\ \cos a & \cos b & \cos c \end{vmatrix}$ de deux manières différentes, en déduire une factorisation de $\sin(a-b) + \sin(b-c) + \sin(c-a)$.

Exercice 19. Soit f l'endomorphisme canoniquement associée à $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$.

Déterminer les valeurs $\lambda \in \mathbb{R}$ tels que $f - \lambda id_E$ soit non injective.

Exercice 20. Dans \mathbb{R}^3 , on considère les trois plans d'équations respectives (1-m)x-2y+z=0, 3x-(1+m)y-2z=0 et 3x-2y-(1+m)z=0.

À quelle condition sur m ces trois plans ont-ils au moins une droite en commun?

Exercice 21. Calculer les déterminants de taille n suivants $(a_1, \ldots, a_n \in \mathbb{R}, \text{ et } a, b \text{ réels non nuls distincts}):$

$$\begin{vmatrix} 0 & \cdots & 0 & a_n \\ \vdots & & & 0 \\ 0 & a_2 & & \vdots \\ a_1 & 0 & \cdots & 0 \end{vmatrix}; \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{vmatrix}; \begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_2 & a_2 & a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_n & a_n & \cdots & a_n \end{vmatrix}; \begin{vmatrix} a+b & b & 0 & \cdots & 0 \\ a & a+b & b & 0 \\ 0 & a & a+b & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ a & a+b & b & 0 \\ 0 & a & a+b & b & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ a & a+b & b & 0 \\ 0 & a & a+b & b & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ a & a+b & b & 0 \\ 0 & \dots & 0 & a & a+b & b \end{vmatrix}$$

Exercice 22. Soient
$$a, b, c$$
 des réels, avec $a \neq b$. On pose $A = \begin{pmatrix} c & a & \dots & a \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ b & \dots & b & c \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$, et U la

matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

- a) Montrer que $P(x) = \det(A + xU)$ est un polynôme en x, de degré au plus 1.
- b) En déduire $\det A$.