TD 15. Polynômes.

Equations d'inconnue un polynôme

Exercice 1. a) Déterminer tous les polynômes P et Q de $\mathbb{R}[X]$ tels que $Q^2 = XP^2$.

- b) Déterminer tous les polynômes P de $\mathbb{R}[X]$ tels que $(P')^2 = 4P$.
- c) Déterminer tous les polynômes P de $\mathbb{R}[X]$ tels que $(X^2 + 1)P'' 6P = 0$.

Exercice 2. Déterminer tous les polynômes de $\mathbb{C}[X]$ tels que :

$$P(1) = 3, \ P'(1) = 4, \ P''(1) = 5, \ \text{et} \ \forall n \in \mathbb{N}, \ n \ge 3 \Rightarrow P^{(n)}(1) = 0.$$

Liens entre racines et division euclidienne

Exercice 3. Soit $P \in \mathbb{K}[X]$ et $(a,b) \in \mathbb{K}^2$, $a \neq b$.

- a) Déterminer le reste de la division euclidienne de P par (X-a)(X-b).
- b) Déterminer le reste de la division euclidienne de P par $(X-a)^2$.
- c) Soit $n \in \mathbb{N}$, avec $n \geq 2$. En s'inspirant des méthodes vues aux deux questions précédentes, déterminer le reste de la division euclidienne de $(X-2)^{2n} + (X-1)^n + 1$ par $(X-1)^2(X-2)$.

Exercice 4. Soient $n \geq 2, \theta \in \mathbb{R}$.

Déterminer le reste dans $\mathbb{R}[X]$ dans la division euclidienne de $(X \sin \theta + \cos \theta)^n$ par $X^2 + 1$.

Exercice 5. Soit $n \in \mathbb{N}^*$. On pose $P_n = nX^{n+1} - (n+1)X^n + 1$.

- a) Montrer que P_n est divisible par $(X-1)^2$.
- b) Simplifier $P_n P_{n-1}$ pour tout $n \ge 2$.
- b) En déduire le quotient de la division euclidienne de P_n par $(X-1)^2$.

Nombre de racines d'un polynôme

Exercice 6. Le but de cet exercice est de déterminer les polynômes $P \in \mathbb{C}[X]$ tels que :

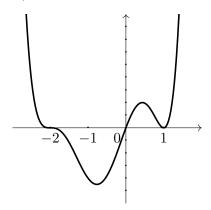
$$\begin{cases} P(0) = 0 \\ P(X^2 + 1) = P(X)^2 + 1 \end{cases}$$

- 1) On suppose dans cette question que $P \in \mathbb{C}[X]$ est solution. Soit $(u_n)_n$ la suite définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + 1$.
 - a) Montrer que la suite u est strictement monotone.
 - b) On pose, pour tout $n \in \mathbb{N}$, $v_n = P(u_n)$. Montrer que v = u.
 - c) En déduire P.
- 2) Conclure.

Exercice 7. Soit $P \in \mathbb{C}[X]$ tel que pour tout $x \in \mathbb{R}$, $P(x) \in \mathbb{R}$. Montrer que $P \in \mathbb{R}[X]$.

Factorisation d'un polynôme

Exercice 8. Soit P un polynôme unitaire de $\mathbb{R}[X]$, de degré 6. À partir de la courbe représentative de sa fonction polynomiale ci-dessous, déterminer P sous forme factorisée :



Exercice 9. Factoriser les polynômes suivants dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$:

a)
$$P = X^8 + X^4 + 1$$
 b) $P = X^{2n} - 2\cos(n\theta)X^n + 1$ $(\theta \in \mathbb{R}, n \in \mathbb{N}^*)$

Exercice 10. a) Soit $P = X^3 - 16X^2 + 83X - 152$. Factoriser P, dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$, sachant que la somme de deux des racines est égale à la troisième.

b) Soit, dans \mathbb{C} , l'équation : $z^3 + 5z^2 - 8z + \lambda = 0$ où $\lambda \in \mathbb{C}$. Donner une CNS sur λ pour que deux des racines de cette équation aient pour somme -1. Dans ce cas, résoudre l'équation.

Exercice 11. Soient $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}$. On considère le polynôme $P = (X+1)^n - e^{2in\theta}$.

- a) Déterminer les racines de P sous forme simplifiée.
- b) Factoriser P.
- c) En calculant P(0), déterminer $A = \prod_{k=0}^{n-1} \sin\left(\theta + \frac{k\pi}{n}\right)$.

Suite de polynômes

Exercice 12. On considère la suite de polynômes de $\mathbb{R}[X]$ définie par :

$$P_0 = 1, P_1 = 2X$$
 et pour tout $n \in \mathbb{N}^*, P_{n+1} = 2XP_n - 2nP_{n-1}$

- $\mathbf{1}^{\circ}$) Calculer P_2, P_3 .
- 2°) Déterminer le degré et le coefficient dominant de P_n .
- **3°)** Déterminer la parité de P_n pour tout $n \in \mathbb{N}$.

Polynômes et algèbre linéaire (premiers exercices!)

Exercice 13. On pose $E = \mathbb{R}[X]$ et pour tout $P \in E$, f(P) = P - P'.

- $\mathbf{1}^{\circ}$) Montrer que f est un endomorphisme de E.
- 2°) Déterminer son noyau. Qu'en déduit-on?
- **3°)** Pour $n \in \mathbb{N}$, on définit la fonction polynôme P_n par : $\forall x \in \mathbb{R}, P_n(x) = n! \left(\sum_{k=0}^n \frac{x^k}{k!}\right)$. Vérifier que P_n est solution de l'équation différentielle : $-y' + y = x^n$.
- 4°) En déduire que f est surjective.

Exercice 14. Soit $E = \mathbb{R}_n[X]$ où $n \in \mathbb{N}$. On pose : $\forall P \in E, u(P) = P(1 - X)$.

- $\mathbf{1}^{\circ}$) Vérifier que u est un endomorphisme de E.
- 2°) Calculer $u \circ u$. Qu'en déduit-on?

Exercice 15. Soit $a \in \mathbb{R}$ et $A = \begin{pmatrix} -1 & a & a \\ 1 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$.

- a) Calculer $(A + I_3)^3$.
- b) Déterminer le reste de la division euclidienne de X^n par $(X+1)^3$. En déduire A^n pour tout $n \in \mathbb{N}$.

Exercice 16. Soit n un entier supérieur ou égal à 2.

 $\mathbf{1}^{\circ}$) Soit f l'application définie sur $\mathbb{R}_n[X]$ par :

$$\forall P \in \mathbb{R}_n[X], \quad f(P) = X^2 P'' + X P' - P$$

Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.

 2°) Même question avec q définie par :

$$\forall P \in \mathbb{R}_n[X], \quad q(P) = X^3 P'' + X^2 P' - n^2 X P$$