Correction du devoir surveillé 8.

Exercice 1

- 1°) Soit $t \in \mathbb{R}_+^*$. $e^{-t} < 1$ donc $1 e^{-t} > 0$ donc $t + 1 e^{-t} > 0$. Ainsi, f est bien définie sur \mathbb{R}_+^*
- **2°)** $t + 1 e^{-t} = t + 1 (1 t + o(t)) = 2t + o(t) \sim 2t$. Ainsi, $f(t) \sim \frac{1}{t \to 0} 2t$.
- **3°) a)** Par somme et quotient, f est dérivable sur \mathbb{R}_+^* , et pour tout t > 0, $f'(t) = -\frac{1 + e^{-t}}{(t + 1 e^{-t})^2} < 0$ puisque $e^{-t} > 0$.

Ainsi f est strictement décroissante sur l'intervalle $]0,+\infty[$, et elle y est continue. D'après le théorème de la bijection, f réalise une bijection de $]0,+\infty[$ sur $f(]0,+\infty[)$.

Comme $f(t) \underset{t\to 0}{\sim} \frac{1}{2t}$, $f(t) \underset{t\to 0}{\longrightarrow} +\infty$, et par ailleurs $f(t) \underset{t\to +\infty}{\longrightarrow} 0$, donc $f(]0, +\infty[) =]0, +\infty[$. Ainsi f est une bijection de \mathbb{R}_+^* dans \mathbb{R}_+^* .

Soit $n \in \mathbb{N}^*$. $n \in \mathbb{R}_+^*$ donc n a un unique antécédent par f, autrement dit : $\exists ! x_n \in \mathbb{R}_+^*$ tel que $f(x_n) = n$

- b) Soit $n \in \mathbb{N}^*$. n < n+1 i.e. $f(x_n) < f(x_{n+1})$. Si on avait $x_n \le x_{n+1}$, comme f est décroissante, on aurait $f(x_n) \ge f(x_{n+1})$, absurde. Donc $x_n > x_{n+1}$.

 Ainsi, (x_n) est strictement décroissante.
- c) La suite (x_n) est décroissante et elle est minorée (par 0), donc elle converge. Notons ℓ sa limite. Comme pour tout $n \in \mathbb{N}^*$, $x_n > 0$, on a $\ell \ge 0$. Si on avait $\ell > 0$, alors f serait définie et continue en ℓ , et on aurait $f(x_n) \xrightarrow[n \to +\infty]{} f(\ell)$, i.e.

 $n \underset{n \to +\infty}{\longrightarrow} f(\ell) \in \mathbb{R}$: absurde.

Donc $\ell = 0$.

- **d)** On sait que $f(t) \underset{t\to 0}{\sim} \frac{1}{2t}$, et $x_n \underset{n\to +\infty}{\longrightarrow} 0$, donc $f(x_n) \underset{n\to +\infty}{\sim} \frac{1}{2x_n}$. Cela s'écrit aussi $n \underset{n\to +\infty}{\sim} \frac{1}{2x_n}$, d'où $x_n \underset{n\to +\infty}{\sim} \frac{1}{2n}$.
- **4°)** Soit x > 0. La fonction $t \mapsto f(t)$ est continue sur l'intervalle \mathbb{R}_+^* donc sur le segment [x, 2x] qui est inclus dans \mathbb{R}_+^* . Donc F(x) existe.

 $F \text{ existe sur } \mathbb{R}_+^*$.

- 5°) Étude en $+\infty$
 - a) Soit $t \in \mathbb{R}_+^*$.

 $0 < e^{-t} < 1 \text{ donc } -1 < -e^{-t} < 0. \text{ Donc, } t < t + 1 - e^{-t} < t + 1.$

Tous les termes sont strictement positifs donc $\boxed{\frac{1}{t+1} \leq f(t) \leq \frac{1}{t}}$

b) Soit x > 0. On a bien x < 2x, et pour tout $t \in [x, 2x]$, $\frac{1}{t+1} \le f(t) \le \frac{1}{t}$.

Par croissance de l'intégrale sur le segment [x, 2x], $\int_{x}^{2x} \frac{1}{t+1} dt \le F(x) \le \int_{x}^{2x} \frac{1}{t} dt$.

Or
$$\int_{x}^{2x} \frac{1}{t+1} dt = [\ln(|t+1|)]_{x}^{2x} = \ln(2x+1) - \ln(x+1) = \ln\left(\frac{2x+1}{x+1}\right)$$
, et $\int_{x}^{2x} \frac{1}{t} dt = [\ln(|t|)]_{x}^{2x} = \ln(2x) - \ln(x) = \ln(2)$.

$$\frac{2x+1}{x+1} \underset{x \to +\infty}{\sim} \frac{2x}{x} \underset{x \to +\infty}{\sim} 2 \text{ i.e. } \frac{2x+1}{x+1} \underset{x \to +\infty}{\longrightarrow} 2, \text{ donc } \ln\left(\frac{2x+1}{x+1}\right) \underset{x \to +\infty}{\longrightarrow} \ln(2) \text{ par continuit\'e de ln.}$$
 Par le théorème d'encadrement, $F(x) \underset{x \to \infty}{\longrightarrow} \ln(2)$

6°) Sens de variations

a) f est continue sur l'intervalle \mathbb{R}_+^* donc admet une primitive H sur \mathbb{R}_+^* .

H est donc de classe C^1 sur \mathbb{R}_+^* .

On a alors : $\forall x > 0, F(x) = H(2x) - H(x)$.

Donc F est de classe C^1 sur \mathbb{R}_+^* comme différence et composée de fonctions de classe C^1 .

De plus, on a pour tout x > 0:

$$F'(x) = 2H'(2x) - H'(x) = 2f(2x) - f(x)$$

$$= \frac{2}{2x + 1 - e^{-2x}} - \frac{1}{x + 1 - e^{-x}}$$

$$= \frac{2x + 2 - 2e^{-x} - 2x - 1 + e^{-2x}}{(2x + 1 - e^{-2x})(x + 1 - e^{-x})}$$

$$= \frac{1 - 2e^{-x} + e^{-2x}}{(2x + 1 - e^{-2x})(x + 1 - e^{-x})}$$

$$F'(x) = \frac{(1 - e^{-x})^2}{(2x + 1 - e^{-2x})(x + 1 - e^{-x})}$$

Ainsi, pour tout x > 0, $F'(x) = (1 - e^{-x})^2 f(2x) f(x)$

b) f > 0 par la question 5a et, pour tout $x > 0, e^{-x} \neq 1$ donc pour tout x > 0, F'(x) > 0. Comme \mathbb{R}_+^* est un intervalle, F est strictement croissante sur \mathbb{R}_+^* .

7°) Étude de F en 0

a) On a : $e^{-t} = 1 - t + \frac{t^2}{2} + o(t^2)$. On en déduit :

$$f(t) \underset{t \to 0}{=} \frac{1}{t + 1 - 1 + t - \frac{t^2}{2} + o(t^2)} \underset{t \to 0}{=} \frac{1}{2t - \frac{t^2}{2} + o(t^2)}$$

$$= \underbrace{\frac{1}{2t} \frac{1}{1 - \frac{t}{4} + o(t)}}$$

On pose $X = \frac{t}{t \to 0} \frac{t}{4} + o(t)$. $X \xrightarrow[t \to 0]{} 0$. On a $X \underset{t \to 0}{\sim} \frac{t}{4}$ donc un o(X) est un o(t).

$$\frac{1}{1-X} = 1 + X + o(X). \text{ D'où}: f(t) = \frac{1}{2t} \left(1 + \frac{t}{4} + o(t)\right) \text{ donc } f(t) = \frac{1}{2t} + \frac{1}{8} + o(1)$$

Donc $a = \frac{1}{2}$ et $b = \frac{1}{8}$ conviennent

b) g est continue sur \mathbb{R}_+^* comme somme de fonctions continues.

Par la question précédente, $g(t) = \frac{1}{t \to 0} \frac{1}{8} + o(1)$ donc $g(t) \xrightarrow[t \to 0]{} \frac{1}{8}$.

Ainsi, g se prolonge par continuité en 0 en posant $g(0) = \frac{1}{8}$.

On a prolongé g en une fonction continue sur \mathbb{R}_+

c) g est continue sur l'intervalle \mathbb{R}_+ donc, par le théorème fondamental de l'analyse, $G: x \mapsto \int_0^x g(t) dt$ est l'unique primitive de g s'annulant en 0.

G est dérivable sur \mathbb{R}_+ et G'=g ie pour tout $x\in\mathbb{R}_+, G'(x)=g(x)$.

Donc $G'(x) = \frac{1}{x \to 0} \frac{1}{8} + o(1)$.

Par primitivation,
$$G(x) \underset{x\to 0}{=} G(0) + \frac{x}{8} + o(x)$$
.
Comme $G(0) = 0$, il vient :
$$G(x) \underset{x\to 0}{=} \frac{x}{8} + o(x)$$
.

 $\mathbf{d)} \ \forall x > 0,$

$$F(x) = \int_{x}^{2x} f(t) dt = \int_{x}^{2x} \left(\frac{1}{2t} + g(t)\right) dt$$

$$= \frac{1}{2} \int_{x}^{2x} \frac{1}{t} dt + \int_{x}^{2x} g(t) dt \quad \text{par linéarité de l'intégrale}$$

$$= \frac{1}{2} [\ln(|t|)]_{x}^{2x} + [G(t)]_{x}^{2x}$$

$$= \frac{1}{2} (\ln(2x) - \ln(x)) + G(2x) - G(x)$$

$$F(x) = \frac{\ln 2}{2} + G(2x) - G(x)$$

Ainsi,
$$F(x) = \frac{\ln 2}{x \to 0} + \frac{2x}{8} + o(x) - \frac{x}{8} + o(x)$$
. Finalement, $F(x) = \frac{\ln 2}{x \to 0} + \frac{x}{8} + o(x)$

e)
$$F(x) = \lim_{x \to 0} \frac{\ln 2}{2} + \frac{x}{8} + o(x) \text{ donc } F(x) \xrightarrow[x \to 0]{} \frac{\ln 2}{2}$$
.

On peut donc prolonger
$$F$$
 par continuité en 0 en posant $F(0) = \frac{\ln 2}{2}$

Maintenant que F est définie (et continue) en 0, l'existence d'un développement limité à l'ordre 1 en 0 nous permet d'affirmer que F est dérivable en 0, et grâce au coefficient de x dans ce développement limité, on obtient que $\left| F'(0) = \frac{1}{8} \right|$

f) On sait déjà que F est dérivable en 0 et que F est de classe C^1 sur \mathbb{R}_+^* .

Tout revient à savoir si F' est continue en 0 ie $F'(x) \xrightarrow[x \to 0]{} F'(0) = \frac{1}{8}$.

Pour tout $x \in \mathbb{R}_{+}^{*}$, $F'(x) = (1 - e^{-x})^{2} f(2x) f(x)$ par 6a

Par 2,
$$f(x) \underset{x\to 0}{\sim} \frac{1}{2x}$$
 donc, puisque $2x \underset{x\to 0}{\longrightarrow} 0$, $f(2x)f(x) \underset{x\to 0}{\sim} \frac{1}{4x} \frac{1}{2x} \underset{x\to 0}{\sim} \frac{1}{8x^2}$.

Par 2,
$$f(x) \underset{x\to 0}{\sim} \frac{1}{2x}$$
 donc, puisque $2x \underset{x\to 0}{\longrightarrow} 0$, $f(2x)f(x) \underset{x\to 0}{\sim} \frac{1}{4x} \frac{1}{2x} \underset{x\to 0}{\sim} \frac{1}{8x^2}$.
D'autre part, $-x \underset{x\to 0}{\longrightarrow} 0$ donc $e^{-x} - 1 \underset{x\to 0}{\sim} -x$, donc $1 - e^{-x} \underset{x\to 0}{\sim} x$, d'où $(1 - e^{-x})^2 \underset{x\to 0}{\sim} x^2$.

Finalement, $F'(x) \underset{x\to 0}{\sim} \frac{1}{8} \text{ donc } F'(x) \underset{x\to 0}{\longrightarrow} \frac{1}{8} \text{ ie } F'(x) \underset{x\to 0}{\longrightarrow} F'(0).$

F' est donc continue en 0.

Finalement, $\mid F$ est de classe C^1 sur \mathbb{R}_+ .

Exercice 2

1°) Soit
$$k \in [1, n]$$
. $Y_k(\Omega) = \{0, 1\}$. De plus $P(Y_k = 1) = \frac{1}{2}$ (donc $P(Y_k = 0) = \frac{1}{2}$). Donc Y_k suit la loi de Bernoulli de paramètre $\frac{1}{2}$.

 $N = \sum Y_k$ est une somme de n variables de Bernoulli indépendantes de même paramètre $\frac{1}{2}$.

$$N$$
 suit la loi binomiale de paramètre n et $\frac{1}{2}: N \sim \mathcal{B}\left(n, \frac{1}{2}\right)$.

Ainsi,
$$N(\Omega) = \llbracket 0, n \rrbracket$$
 et, pour tout $k \in \llbracket 0, n \rrbracket$, $P(N = k) = \binom{n}{k} \frac{1}{2^k} \frac{1}{2^{n-k}} = \binom{n}{k} \frac{1}{2^n}$.

2°) Il y a deux cas : soit il y a au moins un gagnant et on a alors
$$S = n$$
. Soit il n'y a aucun gagnant et on a alors $S = 0$. Donc $S(\Omega) = \{0, n\}$.

S = 0 ssi tous les joueurs sont perdants.

Autrement dit, $(S = 0) = (Y_1 = 0) \cap (Y_2 = 0) \cap \cdots \cap (Y_n = 0)$.

Ainsi, $P(S=0) = P((Y_1=0) \cap (Y_2=0) \cap \cdots \cap (Y_n=0)) = P(Y_1=0)P(Y_2=0) \dots P(Y_n=0)$ par indépendance des Y_k .

Finalement
$$P(S=0) = \frac{1}{2^n}$$

Or
$$P(S = n) = 1 - P(S = 0)$$
 donc $P(S = n) = 1 - \frac{1}{2^n}$

$$E(S) = 0 \times P(S = 0) + n \times P(S = n)$$
. Donc $E(S) = n\left(1 - \frac{1}{2^n}\right)$

3°)
$$S = \sum_{k=1}^{n} X_k$$
 donc, par linéarité de l'espérance, $E(S) = \sum_{k=1}^{n} E(X_k)$.

Les rôles de tous les joueurs étant symétriques, les X_k ont même loi donc même espérance.

Ainsi,
$$E(S) = nE(X_1)$$
. D'où, pour tout $k \in [1, n]$, $E(X_k) = E(X_1) = 1 - \frac{1}{2^n}$.

4°) Si un nouvel ami arrive, l'espérance du gain pour chaque joueur est :
$$1 - \frac{1}{2^{n+1}}$$

$$n+1 > n \text{ donc } 2^{n+1} > 2^n \text{ d'où } \frac{1}{2^{n+1}} < \frac{1}{2^n} \text{ donc } 1 - \frac{1}{2^{n+1}} > 1 - \frac{1}{2^n}.$$

Ainsi, les joueurs ont intérêt à avoir un ami qui arrive dans le groupe et parie avec eux.

5°)
$$(X_k = 0) = (Y_k = 0)$$
 donc $P(X_k = 0) = P(Y_k = 0)$ donc, par 1, $P(X_k = 0) = \frac{1}{2}$

6°) a) Sachant que
$$(Y_k=1)$$
, le joueur numéro k a gagné, $N-1$ est donc le nombre de gagnants en ne comptant par le joueur k :

$$N-1=\sum_{\substack{1\leq i\leq n\\i\neq k}}Y_i$$
: somme de $n-1$ variables de Bernoulli indépendantes de même paramètre $\frac{1}{2}$.

Donc, sachant que
$$(Y_k=1),\,N-1$$
 suit la loi binomiale de paramètres $n-1$ et $\frac{1}{2}$

b) Soit
$$i \in [1, n]$$
.

$$\left(X_k = \frac{n}{i}\right) = (Y_k = 1) \cap (N = i) \text{ donc } P\left(X_k = \frac{n}{i}\right) = P(Y_k = 1) \cap (N = i).$$

Par la formule des probabilités composées, $P\left(X_k = \frac{n}{i}\right) = P(Y_k = 1)P_{(Y_k = 1)}(N = i)$.

$$P(Y_k = 1) = \frac{1}{2}.$$

De plus, $P_{(Y_k=1)}(N=i)=P_{(Y_k=1)}(N-1=i-1)=\binom{n-1}{i-1}\frac{1}{2^{n-1}}$ par la question précédente.

Donc,
$$P\left(X_k = \frac{n}{i}\right) = \binom{n-1}{i-1} \left(\frac{1}{2}\right)^n$$
.

7°)
$$X_k(\Omega) = \left\{0, n, \frac{n}{2}, \dots, \frac{n}{n-1}, 1\right\}$$
 donc

$$E(X_k) = 0 \times P(X_k = 0) + \sum_{i=1}^n \frac{n}{i} P(X_k = i)$$

$$= \sum_{i=1}^n \frac{n}{i} \binom{n-1}{i-1} \left(\frac{1}{2}\right)^n$$

$$= \frac{1}{2^n} \sum_{i=1}^n \frac{n}{i} \frac{(n-1)!}{(i-1)!(n-i)!} = \frac{1}{2^n} \sum_{i=1}^n \binom{n}{i}$$

$$=\frac{1}{2^n}\left(\sum_{i=0}^n\binom{n}{i}1^i1^{n-i}-1\right)$$

$$=\frac{1}{2^n}((1+1)^n-1)$$
 par la formule du binôme
$$E(X_k)=1-\frac{1}{2^n}$$

- 8°) $(X_k = n) \cap (X_j = n) = \emptyset$ donc $P((X_k = n) \cap (X_j = n)) = 0$. En revanche, $P(X_k = n)P(X_j = n) \neq 0$ donc $P((X_k = n) \cap (X_k = n)) \neq P(X_k = n)P(X_j = n)$. Donc, les variables X_k et X_j ne sont pas indépendantes.
- **9°) a)** Remarquons d'abord que $(T=0) = \bigcap_{k=1}^{n} (Z_k=0)$.

Sachant (S=0) i.e. sachant qu'il n'y a eu aucun gagnant au premier match alors il n'y a aucun argent misé et donc aucune somme d'argent à gagner : peu importe les paris faits, tous les Z_k sont nuls et on a nécessairement T=0. Ainsi $P_{(S=0)}(T=0)=1$.

Sachant (S = n), il y a de l'argent en jeu, donc pour chaque $k \in \{1, ..., n\}$, Z_k est nul si et seulement si le joueur k a misé sur la mauvaise équipe; on en tire que les événements $(Z_k = 0)$ sachant (S = n) sont indépendants et qu'ils sont tous de probabilité $\frac{1}{2}$. Ainsi :

$$P_{(S=n)}((Z_1=0)\cap\cdots\cap(Z_n=0))=P_{(S=n)}(Z_1=0)\dots P_{(S=n)}(Z_n=0)=\frac{1}{2}\dots\frac{1}{2}$$

i.e. $P_{(S=n)}(T=0)=\left(\frac{1}{2}\right)^n$

b) ((S=0),(S=n)) forment un système complet d'événements donc, par la formule des probabilités totales,

$$P(T=0) = P(S=0)P_{(S=0)}(T=0) + P(S=n)P_{(S=n)}(T=0)$$

$$= \frac{1}{2^n} + \left(1 - \frac{1}{2^n}\right) \frac{1}{2^n} \quad \text{par 2 et 9a}$$

$$P(T=0) = \frac{1}{2^n} \left(2 - \frac{1}{2^n}\right)$$

$$T(\Omega) = \{0, n\} \text{ donc } P(T=n) = 1 - P(T=0) = 1 - \frac{1}{2^{n-1}} + \frac{1}{2^{2n}}$$

Or
$$\left(1 - \frac{1}{2^n}\right)^2 = 1 - \frac{1}{2^{n-1}} + \frac{1}{2^{2n}} \text{ donc } P(T=n) = \left(1 - \frac{1}{2^n}\right)^2$$
.

c)
$$E(T) = 0 \times P(T = 0) + n \times P(T = n) \text{ donc } E(T) = n \left(1 - \frac{1}{2^n}\right)^2$$
.
 $V(T) = E(T^2) - E(T)^2$.

Par la formule du transfert, $E(T^2) = 0^2 \times P(T=0) + n^2 \times P(T=n) = n^2 \left(1 - \frac{1}{2^n}\right)^2$.

$$V(T) = n^{2} \left(1 - \frac{1}{2^{n}}\right)^{2} - n^{2} \left(1 - \frac{1}{2^{n}}\right)^{4}$$
$$= n^{2} \left(1 - \frac{1}{2^{n}}\right)^{2} \left(1 - \left(1 - \frac{1}{2^{n}}\right)^{2}\right)$$
$$V(T) = n^{2} \left(1 - \frac{1}{2^{n}}\right)^{2} \left(\frac{1}{2^{n-1}} - \frac{1}{2^{2n}}\right)$$

10°) $T = \sum_{k=1}^{n} Z_k$ donc, par linéarité de l'espérance, $E(T) = \sum_{k=1}^{n} E(Z_k)$.

Par symétrie des rôles des joueurs, les \mathbb{Z}_k ont toutes même loi donc même espérance.

Ainsi,
$$E(T) = nE(Z_1)$$
. Donc, pour tout $k \in [1, n]$, $E(Z_k) = E(Z_1) = \left(1 - \frac{1}{2^n}\right)^2$

Exercice 3

- 1°) Soit $Q \in \mathbb{R}_{2n+1}[X]$. $\deg(Q(1-X)) = \deg(Q) \times \deg(1-X) = \deg(Q) \le 2n+1$, donc $Q(1-X) \in \mathbb{R}_{2n+1}[X]$. Or $\mathbb{R}_{2n+1}[X]$ est un sous-espace vectoriel de $\mathbb{R}[X]$ donc il est stable par combinaison linéaire, donc $u_n(Q) \in \mathbb{R}_{2n+1}[X]$.
 - Soient $(P,Q) \in \mathbb{R}_{2n+1}[X]^2$ et $\lambda \in \mathbb{R}$,

$$u_n(\lambda P + Q) = \frac{1}{2} ((\lambda P + Q)(1 - X) + (\lambda P + Q)(X))$$

$$= \frac{1}{2} (\lambda P(1 - X) + Q(1 - X) + \lambda P(X) + Q(X))$$

$$= \lambda \frac{1}{2} (P(1 - X) + P(X)) + \frac{1}{2} (Q(1 - X) + Q(X)) = \lambda u_n(P) + u_n(Q)$$

Ainsi u_n est linéaire.

- En conclusion, u_n est donc un endomorphisme de $\mathbb{R}_{2n+1}[X]$
- 2°) Pour tout $k \in \{0, ..., 2n+1\}$, $\deg(P_k) = k$. \mathcal{B} est constituée de 2n+2 polynômes de $\mathbb{R}_{2n+1}[X]$, et justement $\dim(\mathbb{R}_{2n+1}[X]) = 2n+2$. Comme ces polynômes sont non nuls de de degrés deux à deux distincts, ils forment par ailleurs une famille libre de $\mathbb{R}_{2n+1}[X]$. Donc \mathcal{B} est une base de $\mathbb{R}_{2n+1}[X]$.
- 3°) Soit $k \in \{0, \dots, 2n+1\}$,

$$u_n(P_k) = \frac{1}{2} \left(\left((1 - X) - \frac{1}{2} \right)^k + \left(X - \frac{1}{2} \right)^k \right)$$
$$= \frac{1}{2} \left(\left(\frac{1}{2} - X \right)^k + \left(X - \frac{1}{2} \right)^k \right)$$
$$= \frac{1}{2} \left((-1)^k P_k + P_k \right) = \frac{\left((-1)^k + 1 \right)}{2} P_k$$

Or, si k est pair, $(-1)^k + 1 = 2$, donc $u_n(P_k) = P_k$ pour k pair, et si k est impair, $(-1)^k + 1 = 0$, donc $u_n(P_k) = 0$ pour k impair.

 4°) Comme \mathcal{B} est une base de $\mathbb{R}_{2n+1}[X]$.

$$Im(u_n) = Vect (u_n(P_0), u_n(P_1), u_n(P_2), u_n(P_3), \dots, u_n(P_{2n}), u_n(P_{2n+1}))$$

$$= Vect (P_0, 0, P_2, 0, \dots, P_{2n}, 0)$$

$$= Vect (P_0, P_2, \dots, P_{2n})$$

Comme $(P_0, P_2, \ldots, P_{2n})$ est extraite de \mathcal{B} qui est libre, cette famille est libre. Comme elle est génératrice de $\operatorname{Im}(u_n)$, $(P_0, P_2, \ldots, P_{2n})$ est une base de $\operatorname{Im}(u_n)$.

5°) Comme la base de $\operatorname{Im}(u_n)$ obtenue possède n+1 vecteurs, on en tire que $\dim(\operatorname{Im}(u_n))=n+1$. Or, par le théorème du rang, $\dim(\mathbb{R}_{2n+1}[X])=\dim(\operatorname{Ker}(u_n))+\dim(\operatorname{Im}(u_n))$, d'où $\dim(\operatorname{Ker}(u_n))=2n+2-(n+1)=n+1$. $(P_1,P_3,\ldots,P_{2n+1})$ est une famille libre car extraite de $\mathcal B$ qui est libre, et par la question précédente, ses éléments sont dans $\operatorname{Ker}(u_n)$. Comme elle est composée de n+1 vecteurs et que $n+1=\dim(\operatorname{Ker}(u_n))$, $(P_1,P_3,\ldots,P_{2n+1})$ est une base de $\operatorname{Ker}(u_n)$.

- 6°) Pour tout $k \in \{0, 2, ..., 2n\}$, $u_n \circ u_n(P_k) = u_n (u_n(P_k)) = u_n(P_k)$, et pour tout $k \in \{1, 3, ..., 2n+1\}$, $u_n \circ u_n(P_k) = u_n (u_n(P_k)) = u_n(0) = 0$ par linéarité de u_n , ce qui est bien égal à $u_n(P_k)$. Ainsi, pour tout $k \in \{0, 1, 2, ..., 2n+1\}$, $u_n \circ u_n(P_k) = u_n(P_k)$. $u_n \circ u_n$ et u_n sont deux endomorphismes de $\mathbb{R}_{2n+1}[X]$ qui coïncident sur la base \mathcal{B} de $\mathbb{R}_{2n+1}[X]$, donc ils sont égaux : $u_n \circ u_n = u_n$. Comme u_n est linéaire, on en déduit que u_n est une projection.
- $\mathbf{7}^{\circ}$) Soit $Q \in \mathbb{R}[X]$, tel qu'il existe un polynôme impair tel que $Q = R\left(X \frac{1}{2}\right)$. Calculons :

$$\begin{split} u(Q) &= \frac{1}{2} \left(R \left((1-X) - \frac{1}{2} \right) + R \left(X - \frac{1}{2} \right) \right) \\ &= \frac{1}{2} \left(R \left(\frac{1}{2} - X \right) + R \left(X - \frac{1}{2} \right) \right) \\ &= \frac{1}{2} \left(-R \left(X - \frac{1}{2} \right) + R \left(X - \frac{1}{2} \right) \right) \text{ car } R \text{ impair} \\ &= 0 \end{split}$$

Ainsi, $Q \in \text{Ker}(u)$.

On a donc $\left\{R\left(X-\frac{1}{2}\right) \mid R \in \mathbb{R}[X], R \text{ polynôme impair}\right\} \subset \operatorname{Ker}(u)$.

• Réciproquement, supposons $Q \in \text{Ker}(u)$. Il existe un entier n tel que $Q \in \mathbb{R}_{2n+1}[X]$, et alors $u(Q) = u_n(Q)$ i.e. $u_n(Q) = 0$. On a alors $Q \in \text{Ker}(u_n) = \text{Vect}(P_1, P_3, \dots, P_{2n+1})$. Ainsi, il existe des réels $a_1, a_3, \dots, a_{2n+1}$ tels que $Q = a_1 \left(X - \frac{1}{2}\right) + a_3 \left(X - \frac{1}{2}\right)^3 + \dots + a_{2n+1} \left(X - \frac{1}{2}\right)^{2n+1}$.

En posant $R = a_1X + a_3X^3 + \dots + a_{2n+1}X^{2n+1}$, R est un polynôme impair et $Q = R\left(X - \frac{1}{2}\right)$.

On a donc l'inclusion réciproque.

- Ainsi, $\overline{\mathrm{Ker}(u)} = \left\{ R\left(X \frac{1}{2}\right) \ / \ R \in \mathbb{R}[X], \ R \text{ polynôme impair} \right\}.$
- 8°) a) Par (*), pour tout $t \in \mathbb{R}$, $P(\sin t) = 1 P(\cos t)$.

 Utilisons cette égalité en -t: comme $\sin(-t) = -\sin(t)$ et $\cos(-t) = \cos(t)$, on obtient: $P(-\sin t) = 1 P(\cos t)$.

Ainsi, on a bien, pour tout $t \in \mathbb{R}$, $P(-\sin t) = P(\sin t)$.

b) Lorsque t décrit \mathbb{R} , $\sin(t)$ décrit [-1,1], donc on a : $\forall x \in [-1,1]$, P(-x) = P(x), i.e. P(-x) - P(x) = 0.

Ainsi, tous les réels de [-1,1] sont racines du polynôme P(-X) - P(X), ce qui fait une infinité de racines. Donc il s'agit du polynôme nul : P(-X) - P(X) = 0 i.e. P(-X) = P(X), P est un polynôme pair.

9°)

$$P \text{ solution de } (*) \iff \forall \, t \in \mathbb{R}, \ P(\cos t) + P(\sin t) = 1$$

$$\iff \forall \, t \in \mathbb{R}, \ Q(\cos^2 t) + Q(\sin^2 t) = 1$$

$$\iff \forall \, t \in \mathbb{R}, \ Q(1 - \sin^2 t) + Q(\sin^2 t) = 1$$

- Si Q vérifie $u(Q)=\frac{1}{2}$, alors 2u(Q)=1 i.e. Q(1-X)+Q(X)=1. Soit $t\in\mathbb{R}$. En évaluant en $\sin^2 t$, on obtient bien $Q(1-\sin^2 t)+Q(\sin^2 t)=1$. Ainsi, $u(Q)=\frac{1}{2}\Longrightarrow \forall\, t\in\mathbb{R},\ Q(1-\sin^2 t)+Q(\sin^2 t)=1$.
- Réciproquement, supposons que pour tout $t \in \mathbb{R}$, $Q(1-\sin^2 t) + Q(\sin^2 t) = 1$. Comme $\sin^2 t$ décrit [0,1] lorsque t décrit \mathbb{R} , on obtient que pour tout $x \in [0,1]$, Q(1-x) + Q(x) 1 = 0. Ainsi, le polynôme Q(1-X) + Q(X) 1 a une infinité de racines (tous les réels de [0,1]) : c'est le polynôme nul. Cela signifie bien que $u(Q) = \frac{1}{2}$.

Ainsi, on a montré : P solution de (*) $\iff u(Q) = \frac{1}{2}$.

 10°) D'après les questions 7 et 8, l'ensemble des polynômes réels P vérifiant (*) sera :

$$\left\{Q(X^2)\ /\ Q\in\mathbb{R}[X],\ u(Q)=\frac{1}{2}\right\}.$$

Soit
$$Q \in \mathbb{R}[X]$$
. Comme $u\left(\frac{1}{2}\right) = \frac{1}{2}\left(\frac{1}{2} + \frac{1}{2}\right) = \frac{1}{2}$,

$$\begin{split} u(Q) &= \frac{1}{2} \Longleftrightarrow u(Q) - u\left(\frac{1}{2}\right) = 0 \\ &\iff u\left(Q - \frac{1}{2}\right) = 0 \quad \text{ par lin\'earit\'e de } u \\ &\iff Q - \frac{1}{2} \in \mathrm{Ker}(u) \\ &\iff \exists\, R \in \mathbb{R}[X] \text{ impair, } Q - \frac{1}{2} = R\left(X - \frac{1}{2}\right) \\ &\iff \exists\, R \in \mathbb{R}[X] \text{ impair, } Q = \frac{1}{2} + R\left(X - \frac{1}{2}\right) \end{split}$$

On a donc bien que l'ensemble des polynômes réels P vérifiant (*) est

$$\boxed{\left\{\frac{1}{2} + R\left(X^2 - \frac{1}{2}\right) \ / \ R \in \mathbb{R}[X], \ R \text{ polynôme impair}\right\}}$$

11°) En tant que fonction polynomiale, P_k est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $P'_k(x) = k\left(x - \frac{1}{2}\right)^{k-1}$ (car k > 0), donc :

$$\left(x - \frac{1}{2}\right) P_k'(x) - k P_k(x) = \left(x - \frac{1}{2}\right) k \left(x - \frac{1}{2}\right)^{k-1} - k \left(x - \frac{1}{2}\right)^k = 0.$$

Ainsi, $x \mapsto P_k(x)$ est solution de (E_k) sur \mathbb{R}

12°) Sur
$$]\frac{1}{2}$$
, $+\infty[$, $(E_k) \iff y'(x) - \frac{k}{x - \frac{1}{2}}y(x) = 0$.

C'est une équation différentielle linéaire d'ordre 1 homogène.

Une primitive de $x \mapsto -\frac{k}{x-\frac{1}{2}} \operatorname{sur} \left[\frac{1}{2}, +\infty \right[\operatorname{est} x \mapsto -k \ln \left(|x-\frac{1}{2}| \right). \text{ Or } x-\frac{1}{2} > 0 \text{ si } x \in \left[\frac{1}{2}, +\infty \right[\operatorname{est} x \mapsto -k \ln \left(|x-\frac{1}{2}| \right). \right]$

donc une primitive est $x \mapsto -k \ln \left(x - \frac{1}{2}\right)$ sur cet intervalle.

On en tire que les solutions de (E_k) sur $\left[\frac{1}{2}, +\infty\right[$ sont les fonctions de la forme $x \mapsto \lambda \exp\left(+k\ln\left(x-\frac{1}{2}\right)\right)$ avec $\lambda \in \mathbb{R}$, autrement dit les $x \mapsto \lambda \left(x-\frac{1}{2}\right)^k$ avec $\lambda \in \mathbb{R}$.

13°) $x \mapsto P_k(x)$ est une fonction polynomiale, elle est solution de (E_k) sur \mathbb{R} , et $P_k\left(\frac{3}{2}\right) = 1^k = 1$, donc elle est bien solution de (*).

Réciproquement, soit Q un polynôme tel que $x \mapsto Q(x)$ soit solution de (*) sur \mathbb{R} .

Alors cette fonction est en particulier solution de (E_k) sur $]\frac{1}{2}, +\infty[$, donc il existe un réel λ tel que pour tout $x \in]\frac{1}{2}, +\infty[$, $Q(x) = \lambda P_k(x)$.

Comme $Q\left(\frac{3}{2}\right) = 1$ et $P_k\left(\frac{3}{2}\right) = 1$, on a $1 = \lambda$.

Ainsi pour tout $x \in]\frac{1}{2}, +\infty[$, $Q(x) - P_k(x) = 0$, ce qui signifie que tous les réels de $]\frac{1}{2}, +\infty[$ sont racines du polynôme $Q - P_k$. Cela fait une infinité de racines, donc $Q - P_k$ est le polynôme nul. Ainsi, $Q = P_k$.

On a bien montré que $x \mapsto P_k(x)$ est l'unique fonction polynomiale qui soit solution sur \mathbb{R} de (*)